Journal of Innovative Agriculture, Volume 11, Issue 4 : 19-28. Doi : 10.37446/jinagri/rsa/11.4.2024.19-28
Research Article

OPEN ACCESS | Published on : 31-Dec-2024

Foliar application of nano-nutrients on the structural, photosynthetic traits and yield of Psidium guajava L.

  • Hameed Ali Sadick Ali
  • PG Scholar, Department of Fruit Science, SRM College of Agricultural Sciences, Chengalpattu, Tamil Nadu, India.
  • Ravanachandar Adhikesavan
  • Assistant Professor, Department of Horticulture, SRM College of Agricultural Sciences, Chengalpattu, Tamil Nadu, India.
  • Prakash Kasilingam
  • Assistant Professor, Department of Horticulture, SRM College of Agricultural Sciences, Chengalpattu, Tamil Nadu, India.
  • Chandrasekaran Perumal
  • Assistant Professor, Department of Crop Physiology, SRM College of Agricultural Sciences, Chengalpattu, Tamil Nadu, India.
  • Mohanasundaram Sugumar
  • Assistant Professor, Department of Biochemistry and Crop Physiology, SRM College of Agricultural Sciences, Chengalpattu, Tamil Nadu, India.

Abstract

Background: A field experiment was conducted to study the effects of nano-macro and micronutrient formulations on growth, flowering, physiological attributes and yield of guava (Psidium guajava L.) var. Arka Kiran.

Method: The experiment utilized a Randomized Block Design featuring ten treatments, which included different quantities of zinc oxide (ZnO), boron trioxide (B₂O₃), calcium oxide (CaO), and magnesium oxide (MgO) nanoparticles foliar spray have been given to the guava (Psidium guajava L.) var. Arka Kiran.

Results: Demonstrated that ZnO nanoparticles at 1000 ppm (T4) significantly enhanced on different stages of plant height (2.26 and 2.43 m), canopy spread (1.98 m NS 1.76 m EW and 2.27 m NS 1.92 m EW) during fruit development and harvesting stage, (23.89) days taken for flower initiation, (12.68) days taken from flowering to fruit set, (122.36) days taken from fruit set to maturity, (205.24) flowers per tree and chlorophyll on different stages (31.88, 43.43, 59.53 and 53.36) fruit set per cent (72.10) fruit retention per cent (48.98) number of fruits per tree (72.50) and estimated yield per tree (12.82) compared to other treatments and control.

Conclusion: The findings confirm the potential of nano-nutrient formulations, particularly ZnO nanoparticles in improving guava morphological characteristics, flowering characteristics and physiological health. These results provide a foundation for optimized nutrient management strategies in guava cultivation, promoting sustainable agricultural practices and enhancing productivity.

Keywords

nanoparticles, macronutrients, micronutrients, growth, flowering, physiology, yield

References

  • Abd El, A. E. W. N., Khalifa, S. M., Alqahtani, M. D., Abd–Alrazik, A. M., Abdel-Aziz, H., Mancy, A., & Elkelish, A. (2024). Nano-enhanced growth and resilience strategies for pomegranate Cv. wonderful: Unveiling the impact of zinc and boron nanoparticles on fruit quality and abiotic stress management. Journal of Agriculture and Food Research15, 100908.

    Akula Venu, A. V., Delvadia, D. V., Sharma, L. K., Gardwal, P. C., & Makhmale, S. (2014). Effect of micronutrient application on flowering, fruiting and yield of acid lime (Citrus aurantifolia L.)". cv. Kagzi Lime. 331-334.

    Ali, T. J. M., Mahmood, O. H., & Gouda, F. K. (2024). Organic manure and Nano-Zinc effects on the peach seedlings growth. SABRAO Journal of Breeding & Genetics, 56(4).

    Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in plant science, 10, 225.

    Bhoyar, M. G., & Ramdevputra, M. V. (2017). Effect of foliar spray of zinc, iron and boron on quality of guava (Psidium guajava L.) cv. Sardar L-49. Trends Biosci.,10, 8109-8111.

    Chhipa, H. (2019). Applications of nanotechnology in agriculture. In Methods in microbiology, 46, 115-142.

    Das, D.K. (2003). Micronutrients: Their behaviors in soils and plants. Bangladesh Forest Research Institute, 1-2.

    Embaby, E. M., & Hassan, M. K. (2015). Decay of guava fruit (Psidium guajava Linn.) quality caused by some mold fungi. International Journal of Agricultural Technology.  11(3), 713-730.

    Ha, N. M. C., Nguyen, T. H., Wang, S. L., & Nguyen, A. D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in green house. Research on Chemical Intermediates, 45, 51-63.

    Kamiab, F., & Zamanibahramabadi, E. (2016). The effect of foliar application of nano-chelate super plus ZFM on fruit set and some quantitative and qualitative traits of almond commercial cultivars. Journal of Nuts7(01), 9-20.

    Khanm, H., Vaishnavi, B. A., & Shankar, A. G. (2018). Raise of Nano-fertilizer ERA: Effect of nano scale zinc oxide particles on the germination, growth and yield of tomato (Solanum lycopersicum). Int. J. Curr. Microbiol. Appl. Sci.7(5), 1861-1871.

    Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment international132, 105078.

    Kumar, A., Joseph, A. V., & Bahadur, V. (2024). Effect of foliar application of nano urea, boron and zinc sulphate on growth, yield and quality of guava (Psidium guajava L.) Cv. Allahabad Surkha. Journal of Advances in Biology & Biotechnology, 27(6), 285-292.

    Kumar, J. U., Vijay Bahadur, V.M. Prasad, Saket Mishra and P.K. Shukla. (2017). Effect of different concentrations of iron oxide and zinc oxide nanoparticles on growth and yield of strawberry (Fragaria x ananassa Duch) cv. Chandler. Int.J.Curr.Microbiol.App.Sci., 6(8), 2440-2445.

    Lenka, B., & Das, S. K. (2019). Effect of boron and zinc application on growth and productivity of potato (Solanum tuberosum) at alluvial soil (Entisols) of India. Indian Journal of Agronomy64(1), 129-137.

    León-Silva, S., Arrieta-Cortes, R., Fernández-Luqueño, F., & López-Valdez, F. (2018). Design and production of nanofertilizers. Agricultural Nanobiotechnology: Modern Agriculture for a Sustainable Future, 17-31.

    Marchiol, L. (2019). Nanofertilisers. An outlook of crop nutrition in the fourth agricultural revolution. Italian Journal of Agronomy14(3), 183-190.

    Mikkelsen, R. (2018). Nanofertilizer and nanotechnology: a quick look.18-19.

    Mondal, T., Sarkar, T., Alam, M., Sarkar, S. K., Rathod, K. H., & Bauri, F. K. (2023). Effect of foliar application of micronutrients on plant growth, yield and fruit quality of Thai guava (Psidium guajava L.). Journal of Crop and Weed, 19(1), 88-94.

    Mosa, W. F., El-Shehawi, A. M., Mackled, M. I., Salem, M. Z., Ghareeb, R. Y., Hafez, E. E., ... & Abdelsalam, N. R. (2021). Productivity performance of peach trees, insecticidal and antibacterial bioactivities of leaf extracts as affected by nano fertilizers foliar application. Scientific Reports11(1), 10205.

    Mousavi, S. R., & Rezaei, M. (2011). Nanotechnology in agriculture and food production. J. Appl. Environ. Biol. Sci., 1(10), 414-419.

    NHB, 2024. Online Statistical data based of National Horticultural Board, Ministry of Agriculture, Govt. of India.

    Panse, V. G. & Sukhatme, P. V. (2000). Statistical methods for agricultural workers. indian council of agricultural research, New Delhi, India.157-165.

    Pejam, F., Ardebili, Z. O., Ladan-Moghadam, A., & Danaee, E. (2021). Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. Plos one16(3), e0248778.

    Prakash, D. P., Narayanaswamy, P., & Sondur, S. N. (2002). Analysis of molecular diversity in guava using RAPD markers. The Journal of Horticultural Science and Biotechnology77(3), 287-293.

    Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in microbiology8, 1014.

    Prasad, T. N. V. K. V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K. R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of plant nutrition, 35(6), 905-927.

    Qureshi, A., Singh, D. K., & Dwivedi, S. (2018). Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences, 7(2), 3325-3335.

    Rai, M. K., Phulwaria, M., Harish, Gupta, A. K., Shekhawat, N. S., & Jaiswal, U. (2012). Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell, Tissue and Organ Culture (PCTOC)111, 259-264.

    Rai-Kalal, P., & Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry160, 341-351.

    Kumar, A. (2017). Effect of boron and zinc application on nutrient uptake in guava (Psidium guajava L.) cv. Pant Prabhat Leaves. Int. J. Curr. Microbiol. App. Sci.6(6), 1991-2002.

    Sabir, A., Yazar, K., Sabir, F., Kara, Z., Yazici, M. A., & Goksu, N. (2014). Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nano size fertilizer pulverizations. Scientia Horticulturae, 175, 1-8.

    Sahay, S., Kumari, P., Mishra, P. K., Rashmi, K., Shrivastava, P., Ahmad, M. F., & Kumar, R. (2016, May). Pre-harvest foliar spray of micronutrients and growth regulators on yield attributes of litchi (Litchi chinensis Sonn.)'Purbi'. In V International Symposium on Lychee, Longan and Other Sapindaceae Fruits 1211 (pp. 141-144).

    Sau, S., Ghosh, B., & Sarkar, S. (2017). Correlation and path analysis studies for growth and yield contributing traits in guava as affected by micronutrients. Annals of Plant and Soil Research18(4), 370-374.

    Siddik, M. A., Islam, M. M., Hoque, M. A., Islam, S., Parvin, S., & Rabin, M. H. (2016). Morpho-physiological and yield contributing characters and yield of sesame with 1-Napthalene Acetic Acid (NAA). Journal of Plant Sciences3(6), 329-336.

    Silva, L. C. D., Oliva, M. A., Azevedo, A. A., & Araújo, J. M. D. (2006). Responses of restinga plant species to pollution from an iron pelletization factory. Water, Air, and Soil Pollution175, 241-256.

    Singh, J., & Maurya, A. N. (2004). Effect of micronutrients on bearing of mango (Mangifera Indica) CV Mallika. Progressive Agriculture, 4(1), 47-50.

    Singh, N. B., Amist, N., Yadav, K., Singh, D., Pandey, J. K., & Singh, S. C. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing3(4), 353-364.

    Singh, R. K., Mishra, S., & Bahadur, V. (2023). Effect of nano-chitosan, nano-micronutrients and bio capsules on vegetative growth, flowering and fruiting attributes of strawberry (Fragaria× ananassa) cv. Winter dawn54, 13401-13411.

    Bhadarge, S., & Singh, D. (2022). Effect of different levels of micronutrients on growth and flowering attributes of guava (Psidium guajava L.) fruit in meadow orchard. The Pharma Innovation Journal, 11(6), 2158-2161.

    Vani, N. U., Bhagwan, A., Kumar, A. K., Sreedhar, M., & Sharath, S. R. (2020). Effect of pre-harvest sprays of plant growth regulators and micronutrients on fruit set, fruit drop and fruit retention of guava (Psidium guajava L.) cv. Lucknow-49. Ind. J. Pure App. Biosci.8(6), 254-261.

    Zagzog, O. A., Gad, M. M., & Hafez, N. K. (2017). Effect of nano-chitosan on vegetative growth, fruiting and resistance of malformation of mango. Trends Hortic. Res., 6, 673-681.