Journal of Innovative Agriculture, Volume 11, Issue 2 : 1-10. Doi : 10.37446/jinagri/ra/11.2.2024.1-10
Review Article

OPEN ACCESS | Published on : 30-Jun-2024

Application of nanoparticles in agriculture and vegetable seed germination

  • Arivalagan Gomathi
  • Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu Thiruvarur - 610 005, Tamil Nadu, India.
  • Karri Rama Krishna
  • Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu Thiruvarur - 610 005, Tamil Nadu, India.
  • Iyadurai Arumuka Pravin
  • Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu Thiruvarur - 610 005, Tamil Nadu, India.
  • Alagarsamy Rameshkumar
  • Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu Thiruvarur - 610 005, Tamil Nadu, India.
  • Velayutham Thondaiman
  • Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu Thiruvarur - 610 005, Tamil Nadu, India.
  • Sundaresan Srivignesh
  • Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu Thiruvarur - 610 005, Tamil Nadu, India.

Abstract

The potential revolutionary impact of nanoparticles in agriculture has made them the subject of considerable interest in recent years. This review investigates nanoparticle's effects on the germination process of vegetable seeds. It analyzes the influence of nanoparticles on seed viability, development dynamics, and the overall health of plants. This review comprehensively examines the extant literature to clarify the mechanisms contributing to improving seed germination via nanoparticles. It emphasizes critical elements, including the type and concentration of nanoparticles and the manner of application. In addition, the review examines potential obstacles and apprehensions linked to the application of nanoparticles in agriculture, encompassing safety concerns and ecological ramifications. By analyzing the current research findings, this review offers significant insights into the potential of nanoparticles to enhance the germination of vegetable seeds. Additionally, it establishes a foundation for future research directions in this rapidly developing domain.

Keywords

nanoparticles, nanotechnology, seed germination, silica nanoparticles, selenium biofortification

References

  • Abd Al-Shammari, A. M., & Abbas, D. K. (2023). Response of Growth Characteristics and Yield of Broccoli Hybrids to Foliar Spraying with Copper Nanoparticles. In IOP Conference Series: Earth and Environmental Science (Vol. 1158, No. 4, p. 042064). IOP Publishing.

    Adhikari, T. (2021). Nanotechnology in environmental soil science. Soil Science: Fundamentals to Recent Advances, 297-309.

    Ali, S., Shafique, O., Mahmood, T., Hanif, M. A., Ahmed, I., & Khan, B. A. (2018). A review about perspectives of nanotechnology in agriculture. Pakistan Journal of Agricultural Research, 30(2), 116-121.

    Alsaeedi, A. H., Elgarawany, M. M., El-Ramady, H., Alshaal, T., & Al-Otaibi, A. O. A. (2019). Application of silica nanoparticles induces seed germination and growth of cucumber (Cucumis sativus). Meterology Environment Arid and Land Agriculture Science, 28, 57-68.

    Babu, S., Singh, R., Yadav, D., Rathore, S. S., Raj, R., Avasthe, R., ... & Singh, V. K. (2022). Nanofertilizers for agricultural and environmental sustainability. Chemosphere, 292, 133451.

    Baskar, V., Nayeem, S., Kuppuraj, S. P., Muthu, T., & Ramalingam, S. (2018). Assessment of the effects of metal oxide nanoparticles on the growth, physiology and metabolic responses in vitro grown eggplant (Solanum melongena). 3 Biotechnology, 8, 1-12.

    Bhushan, B. (2017). Introduction to nanotechnology. Springer handbook of nanotechnology, 1-19.

    Budhani, S., Egboluche, N. P., Arslan, Z., Yu, H., & Deng, H. (2019). Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. Journal of Environmental Science and Health, Part C, 37(4), 330-355.

    Chhipa, H. (2019). Applications of nanotechnology in agriculture. In Methods in microbiology (Vol. 46, pp. 115-142). Academic Press.

    Davarpanah, S., Tehranifar, A., Davarynejad, G., Abadía, J., & Khorasani, R. (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae, 210, 57-64.

    Dehkourdi, E. H., Chehrazi, M., Hosseini, H., & Hosseini, M. (2014). The effect of anatase nanoparticles (TiO2) on pepper seed germination (Capsicum annum L.). International Journal of Biosciences, 4(5), 141-145.

    Du, Y., Zhou, J., He, F., Zang, P., Gong, H., Liu, C., & Yang, P. (2023). A bright future: Advanced nanotechnology-assisted microwave therapy. Nano Today, 52, 101963.

    Elizabath, A., Babychan, M., Mathew, A. M., & Syriac, G. M. (2019). Application of nanotechnology in agriculture. International Journal of Pure and Applied Bioscience 7(2), 131-139.

    Elmer, W. H., & White, J. C. (2016). The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environmental Science: Nano, 3(5), 1072-1079.

    Golubkina, N., Zamana, S., Seredin, T., Poluboyarinov, P., Sokolov, S., Baranova, H., ... & Caruso, G. (2019). Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants, 8(4), 102.

    Haghighi, M., & Teixeira da Silva, J. A. (2014). The effect of N-TiO 2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology, 17, 221-227.

    Hasan, M., Mehmood, K., Mustafa, G., Zafar, A., Tariq, T., Hassan, S. G., ... & Shu, X. (2021). Phytotoxic evaluation of phytosynthesized silver nanoparticles on lettuce. Coatings, 11(2), 225.

    Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., ... & Juárez-Maldonado, A. (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8(10), 355.

    Husain, S., Nandi, A., Simnani, F. Z., Saha, U., Ghosh, A., Sinha, A., ... & Verma, S. K. (2023). Emerging trends in advanced translational applications of silver nanoparticles: a progressing dawn of nanotechnology. Journal of Functional Biomaterials, 14(1), 47.

    Iavicoli, I., Leso, V., Beezhold, D. H., & Shvedova, A. A. (2017). Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96-111.

    Jakhar, A. M., Aziz, I., Kaleri, A. R., Hasnain, M., Haider, G., Ma, J., & Abideen, Z. (2022). Nano-fertilizers: A sustainable technology for improving crop nutrition and food security. NanoImpact, 27, 100411.

    Jasim, B., Thomas, R., Mathew, J., & Radhakrishnan, E. K. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). Saudi Pharmaceutical Journal, 25(3), 443-447.

    Kang, H. H., & Lee, D. H. (2020). Fabrication and characterization of cauliflower-like silica nanoparticles with hierarchical structure through ion beam irradiation. Journal of Solid State Chemistry, 289, 121528.

    Kapur, M., Soni, K., & Kohli, K. (2017). Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Advanced Technology in Biology and Medicine, 5(1), 2379-1764.

    Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931.

    Kumar, A., Gupta, K., Dixit, S., Mishra, K., & Srivastava, S. (2019). A review on positive and negative impacts of nanotechnology in agriculture. International Journal of Environmental Science and Technology, 16, 2175-2184.

    Lima, A. K. M., Carvalho, A. V. F., de Paiva Pinheiro, S. K., Torres, Y., Miguel, T. B. A. R., Pireda, S. F., ... & de Castro Miguel, E. (2023). Effect of TiO2 Microparticles in Lettuce (Lactuca sativa L.) Seeds and Seedlings. Bulletin of Environmental Contamination and Toxicology, 110(6), 116.

    Lin, M., Shen, M., Wu, J., Chen, H., Xu, Y., & Liu, W. (2021). Effects of zinc oxide nanoparticles on germination and seedling growth of two vegetables. Journal of Agricultural Resources and Environment38(1), 72-78.

    Madkour, L. H., & Madkour, L. H. (2019). Introduction to nanotechnology (NT) and nanomaterials (NMs). Nanoelectronic materials: fundamentals and applications, 1-47.

    Mao-Hong, L., Mei-Mei, S., Jia-Ni, W., Hui-Ling, C., Yi-Meng, X., & Wei-Tao, L. (2021). Effects of zinc oxide nanoparticles on germination and seedling growth of two vegetables. Journal of Agriculture Resources and Environment, 38(1), 72.

    Margenot, A. J., Rippner, D. A., Dumlao, M. R., Nezami, S., Green, P. G., Parikh, S. J., & McElrone, A. J. (2018). Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant and Soil, 431, 333-345.

    Mihata, A., Usman, R., & Kurawaki, J. (2015). Selective synthesis of gold nanoparticles in water/alcohol binary solution systems by ultrasonic irradiation. e-Journal of Surface Science and Nanotechnology, 13, 427-430.

    Nagarajan, A., Balasubramani, V., Sethuraman, V., Sridhar, T. M., Sasikumar, R., & Vimala, G. (2020). Solanum melongena leaf extract based zinc oxide nanoparticles synthesis using green chemistry concepts. Indian Journal of Chemistry-Section A (IJCA), 59(9), 1273-1277.

    Parveen, K., Kumar, N., & Ledwani, L. (2022). Green Synthesis of Zinc Oxide Nanoparticles Mediated from Cassia renigera Bark and Detect Its Effects on Four Varieties of Rice. Chemistry Select, 7(17), e202200415.

    Pelegrino, M. T., Kohatsu, M. Y., Seabra, A. B., Monteiro, L. R., Gomes, D. G., Oliveira, H. C., ... & Lange, C. N. (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 192, 1-14.

    Rajput, V. D., Faizan, M., Upadhyay, S. K., Kumari, A., Ranjan, A., Sushkova, S., ... & Deryabkina, I. (2022). Influence of nanoparticles on the plant rhizosphere microbiome. In The Role of Nanoparticles in Plant Nutrition under Soil Pollution: Nanoscience in Nutrient Use Efficiency (pp. 83-102). Cham: Springer International Publishing.

    Rajput, V. D., Singh, A., Rawat, S., Sharma, R., Minkina, T. M., Singh, A. K., ... & Nazarenko, O. (2022). Nanotechnology as the cutting edge for sustainable agriculture. In Nanotechnology for Sustainable Agriculture (pp. 3-15). Apple Academic Press.

    Raskar, S. V., & Laware, S. L. (2014). Effect of zinc oxide nanoparticles on cytology and seed germination in onion. International Journal of Current Microbiology and Applied Sciences, 3(2), 467-473.

    Rastogi, A., Tripathi, D. K., Yadav, S., Chauhan, D. K., Živčák, M., Ghorbanpour, M., ... & Brestic, M. (2019). Application of silicon nanoparticles in agriculture. 3 Biotechnology, 9, 1-11.

    Rekha, R., Divya, M., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., ... & Vaseeharan, B. (2019). Synthesis and characterization of crustin capped titanium dioxide nanoparticles: Photocatalytic, antibacterial, antifungal and insecticidal activities. Journal of Photochemistry and Photobiology B: Biology, 199, 111620.

    Revelou, P. K., Xagoraris, M., Kokotou, M. G., & Constantinou-Kokotou, V. (2022). Cruciferous vegetables as functional foods: Effects of selenium biofortification. International Journal of Vegetable Science, 28(3), 191-210.

    Shams, G., Ranjbar, M., & Amiri, A. (2013). Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). Journal of Nanoparticle Research, 15, 1-12.

    Sharifan, H., Moore, J., & Ma, X. (2020). Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicology and Environmental Safety, 191, 110177.

    Sharma, G., Park, S. C., Bandi, R., Ahn, J., Alle, M., & Kim, J. C. (2021). Polyquaternium enhances the colloidal stability of chitosan-capped platinum nanoparticles and their antibacterial activity. Nanotechnology, 32(45), 455603.

    Shilpa, R., & Lawre, S. (1985). Effect of titanium dioxide nano particles on seed germination and germination indices in onion. Education, 2001.

    Sigamoney, M., Shaik, S., Govender, P., & Krishna, S. B. N. (2016). African leafy vegetables as bio-factories for silver nanoparticles: a case study on Amaranthus dubius C Mart. Ex Thell. South African Journal of Botany, 103, 230-240.

    Singh, A., Singh, N. B., Hussain, I., & Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of Biotechnology, 262, 11-27.

    Singh, N. B., Amist, N., Yadav, K., Singh, D., Pandey, J. K., & Singh, S. C. (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nano engineering and Nanomanufacturing, 3(4), 353-364.

    Song, U., & Kim, J. (2020). Zinc oxide nanoparticles: a potential micronutrient fertilizer for horticultural crops with little toxicity. Horticulture, Environment, and Biotechnology, 61(3), 625-631.

    Sravani, A., Sharma, S., & Kalia, A. (2021). Effect of selenium enriched wheat substrate on the nutritional and antioxidant properties of Pleurotus spp. Acta Alimentaria, 50(3), 358-368.

    Sweet, M. J., & Singleton, I. (2011). Silver nanoparticles: a microbial perspective. Advances in Applied Microbiology, 77, 115-133.

    Tang, W., Eilers, J. J., van Huis, M. A., Wang, D., Schropp, R. E., & Di Vece, M. (2015). Formation and photoluminescence of "cauliflower" silicon nanoparticles. The Journal of Physical Chemistry C, 119(20), 11042-11047.

    Thunugunta, T., Channa Reddy, A., Kodthalu Seetharamaiah, S., Ramanna Hunashikatti, L., Gowdra Chandrappa, S., Cherukatu Kalathil, N., & Dhoranapalli Chinnappa Reddy, L. R. (2018). Impact of Zinc oxide nanoparticles on eggplant (Solanum melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnology, 12(6), 706-713.

    Tumpa, F. H., Alam, M. Z., Meah, M. B., & Khokon, M. A. R. (2017). Yeast elicitor and chitosan in controlling seed-borne fungi of bean, okra and radish. Bangladesh Journal of Plant Pathology, 33, 11-20.

    Tumpa, F. H., & Khokon, M. A. R. (2020). Foliar application of chitosan and yeast elicitor facilitate reducing incidence and severity of Alternaria leaf blight of tomato and brinjal. Research Journal of Plant Pathology, 3(2), 4.

    Tymoszuk, A. (2021). Silver nanoparticles effects on in vitro germination, growth, and biochemical activity of tomato, radish, and kale seedlings. Materials, 14(18), 5340.

    Tymoszuk, A., & Wojnarowicz, J. (2020). Zinc oxide and zinc oxide nanoparticles impact on in vitro germination and seedling growth in Allium cepa L. Materials, 13(12), 2784.

    Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S. A., ur Rehman, H., ... & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778.

    Verma, D. K., Patel, S., & Kushwah, K. S. (2021). Effects of nanoparticles on seed germination, growth, phytotoxicity and crop improvement. Agricultural Reviews, 42(1), 1-11.

    Wang, Q., Ma, X., Zhang, W., Pei, H., & Chen, Y. (2012). The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4(10), 1105-1112.

    Wiesner-Reinhold, M., Schreiner, M., Baldermann, S., Schwarz, D., Hanschen, F. S., Kipp, A. P., ... & McKenzie, M. J. (2017). Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health. Frontiers in Plant Science, 8, 266471.

    Wu, J., Wang, G., Vijver, M. G., Bosker, T., & Peijnenburg, W. J. (2020). Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environmental Pollution, 261, 114117.

    Xiong, T., Dumat, C., Dappe, V., Vezin, H., Schreck, E., Shahid, M., ... & Sobanska, S. (2017). Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environmental Science & Technology, 51(9), 5242-5251.

    Xiong, T., Zhang, T., Xian, Y., Kang, Z., Zhang, S., Dumat, C., ... & Li, S. (2021). Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa Hort. Environmental Geochemistry and Health, 43, 423-439.

    Zhang, Z., Guo, H., Carlisle, T., Mukherjee, A., Kinchla, A., White, J. C., ... & He, L. (2016). Evaluation of postharvest washing on removal of silver nanoparticles (AgNPs) from spinach leaves. Journal of Agricultural and Food Chemistry, 64(37), 6916-6922.

    Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., ... & Souto, E. B. (2020). Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules, 25(16), 3731.