Cornous Environmental Sciences, Volume 1, Issue 1 : 6-11. Doi : 10.37446/ces/ra/1.1.2024.6-11
Review Article

OPEN ACCESS | Published on : 31-Dec-2024

Non-thermal plasma applications on fruits and fruit juices

  • M. Sanjeevagandhi
  • Department of Natural Resource Management, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Achirupakkam Campus, Baburayanpaettai, 603201, Tamil Nadu, India.
  • Mohan Kumar P
  • Department of Energy and Chemical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, South Korea.
  • K. Kannan
  • Department of Energy and Chemical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, South Korea.

Abstract

Cold plasma (CP) is an advanced, non-thermal plasma processing technology with significant potential for preserving fruits and fruit juices. Recent research shows that CP processing has attracted attention in fruit processing and storage. The inactivation of microorganisms and extended shelf life of fruits by CP treatment is influenced by several factors, including the type of plasma reactor, discharge power, treatment time, and the inert gas used.  This review highlights how CP can effectively extend the shelf life of fruits, eliminate harmful bacteria and maintain the nutrients, flavour, and colour of the fruits and fruit juices. Unlike conventional high-temperature treatments, CP uses low temperatures to keep fruits fresh and safe without causing damage to quality. Additionally, the study describes various plasma systems, their principles of operation, and their applications in the fruit processing industry. Overall, non-thermal plasma demonstrates significant potential in ensuring the safety and freshness of fruits and fruit juices while meeting consumer demands for high-quality products.

Keywords

cold plasma, plasma reactor, self life, quality, preservation, fruit juices

References

  • Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., & Rodrigues, S. (2015). Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies, 32, 127–135. https://doi.org/10.1016/j.ifset.2015.09.001

    Bursać Kovačević, D., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z. (2016). Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry, 190, 317–323. https://doi.org/10.1016/j.foodchem.2015.05.099

    Chizoba Ekezie, F.-G., Cheng, J.-H., & Sun, D.-W. (2018). Effects of Mild Oxidative and Structural Modifications Induced by Argon Plasma on Physicochemical Properties of Actomyosin from King Prawn ( Litopenaeus vannamei ). Journal of Agricultural and Food Chemistry, 66(50), 13285–13294. https://doi.org/10.1021/acs.jafc.8b05178

    Conrads, H., & Schmidt, M. (2000). Plasma generation and plasma sources. Plasma Sources Science and Technology, 9(4), 441–454. https://doi.org/10.1088/0963-0252/9/4/301

    Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672. https://doi.org/10.1016/j.foodchem.2015.05.135

    Kong, M. G., & Xu Tao Deng. (2003). Electrically efficient production of a diffuse nonthermal atmospheric plasma. IEEE Transactions on Plasma Science, 31(1), 7–18. https://doi.org/10.1109/TPS.2003.808884

    Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484. https://doi.org/10.1016/j.fm.2014.09.010

    Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., Ju, Y., & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry, 135, 99–110. https://doi.org/10.1016/j.plaphy.2018.11.037

    Misra, N. N., Moiseev, T., Patil, S., Pankaj, S. K., Bourke, P., Mosnier, J. P., Keener, K. M., & Cullen, P. J. (2014). Cold Plasma in Modified Atmospheres for Post-harvest Treatment of Strawberries. Food and Bioprocess Technology, 7(10), 3045–3054. https://doi.org/10.1007/s11947-014-1356-0

    Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3–4), 159–170. https://doi.org/10.1007/s12393-011-9041-9

    Misra, N. N., Pankaj, S. K., Walsh, T., O’Regan, F., Bourke, P., & Cullen, P. J. (2014). In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials, 271, 33–40. https://doi.org/10.1016/j.jhazmat.2014.02.005

    Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N., & Cullen, P. J. (2015). Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44, 115–121. https://doi.org/10.1016/j.foodhyd.2014.08.019

    Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science & Technology, 55, 39–47. https://doi.org/10.1016/j.tifs.2016.07.001

    Niemira, B. A. (2012). Cold Plasma Decontamination of Foods. Annual Review of Food Science and Technology, 3(1), 125–142. https://doi.org/10.1146/annurev-food-022811-101132

    Pankaj, S. K., Wan, Z., Colonna, W., & Keener, K. M. (2017). Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture, 97(12), 4016–4021. https://doi.org/10.1002/jsfa.8268

    Pankaj, S., Wan, Z., & Keener, K. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), 4. https://doi.org/10.3390/foods7010004

    Panklai, T., Kumchaiseemak, N., Seelarat, W., Sangwanna, S., Chutimayanaphat, C., Bootchanont, A., Wattanawikkam, C., Rittidach, T., Boonyawan, D., & Porjai, P. (2025). Investigating effects of air-cold plasma jet on enzymatic activity and nutritional quality attributes of Mangosteen (Garcinia mangostana L.) juice. Innovative Food Science & Emerging Technologies, 99, 103878. https://doi.org/10.1016/j.ifset.2024.103878

    Park, H. S., Yang, J., Choi, H. J., & Kim, K. H. (2017). Effective Thermal Inactivation of the Spores of Bacillus cereus Biofilms Using Microwave. Journal of Microbiology and Biotechnology, 27(7), 1209–1215. https://doi.org/10.4014/jmb.1702.02009

    Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G., & Rocculi, P. (2015). Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107, 55–65. https://doi.org/10.1016/j.postharvbio.2015.04.008

    Rodríguez, Ó., Gomes, W. F., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT, 84, 457–463. https://doi.org/10.1016/j.lwt.2017.06.010

    Rossi, F., Kylián, O., Rauscher, H., Hasiwa, M., & Gilliland, D. (2009). Low pressure plasma discharges for the sterilization and decontamination of surfaces. New Journal of Physics, 11(11), 115017. https://doi.org/10.1088/1367-2630/11/11/115017

    Sarangapani, C., Misra, N. N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. J. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225–232. https://doi.org/10.1016/j.jwpe.2016.01.003

    Song, A. Y., Oh, Y. J., Kim, J. E., Song, K. Bin, Oh, D. H., & Min, S. C. (2015). Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Science and Biotechnology, 24(5), 1717–1724. https://doi.org/10.1007/s10068-015-0223-8

    Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225–233. https://doi.org/10.1016/j.ifset.2015.12.022

    Wang, R. X., Nian, W. F., Wu, H. Y., Feng, H. Q., Zhang, K., Zhang, J., Zhu, W. D., Becker, K. H., & Fang, J. (2012). Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66(10), 276. https://doi.org/10.1140/epjd/e2012-30053-1

    Wang, X., Hou, M., Liu, T., Ren, J., Li, H., Yang, H., Hu, Z., & Gao, Z. (2025). Continuous cold plasma reactor for the processing of NFC apple juice: Effect on quality control and preservation stability. Innovative Food Science & Emerging Technologies, 100, 103905. https://doi.org/10.1016/j.ifset.2024.103905

    Xu, L., Garner, A. L., Tao, B., & Keener, K. M. (2017). Microbial Inactivation and Quality Changes in Orange Juice Treated by High Voltage Atmospheric Cold Plasma. Food and Bioprocess Technology, 10(10), 1778–1791. https://doi.org/10.1007/s11947-017-1947-7

    Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. https://doi.org/10.1016/j.ijfoodmicro.2015.05.019