Background: In the present investigation rhamnolipid production was attempted with Pseudomonas sp. NBP08 using groundnut oil cake as a substrate under solid state fermentation conditions.
Methods: Optimized conditions for rhamnolipid production using Box-Behnken 43 experimental design were 8.24, 8.49, 7.30, and 31.96 for groundnut cake, inoculation load, pH and temperature, respectively.
Results: Kinetic parameters observed in optimized media are specific growth rate k (h-1) 0.091, time to reach RL max (h-1) 84, biomass X (mg g-1) 8.2, RL max concentration mg g-1 2.2, RL content (%) 11.3 and productivity (mg g-1h-1) 022. Enhanced oil recovery (EOR) experiments showed the highest percentage of hydrocarbon removal of 85.6% was observed at 2% rhamnolipid concentration.
Conclusion: The optimized biosurfactant used in the present study has shown promising results in terms of 85 % hydrocarbon removal, and this can be used for the large-scale bioremediation of hydrocarbon contaminated soils.
Pseudomonas sp. NBP08, rhamnolipid, groundnut oil cake, solid state fermentation, Box-Behnken design, enhanced oil recovery
Abalos, A., Pinazo, A., Infante, M., & Casals, M. (2001). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 17(5), 1367–1371.
Amani, H. (2015). Evaluation of biosurfactants and surfactants for crude oil contaminated sand washing. Petroleum Science and Technology, 33(5), 510–519. https://doi.org/10.1080/10916466.2014.999941
Abouseoud, M., Maachi, R., & Amrane, A. (2011). Biosurfactant production from olive oil by Pseudomonas fluorescens. Indian Journal of Microbiology, 51(1), 30–36. https://doi.org/10.1007/s12088-011-0076-7
Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R., & Nyayanit, N. V. (2014). Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 5, 697. https://doi.org/10.3389/fmicb.2014.00697
Bodour, A., & Miller-Maier, R. (1998). Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant producing microorganisms. Journal of Microbiological Methods, 32(3), 273–280.
Derguine-Mecheri, L., Kebbouche-Gana, S., & Djenane, D. (2021). Biosurfactant production from newly isolated Rhodotorula sp. YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils. World Journal of Microbiology and Biotechnology, 37(1), 1–18. https://doi.org/10.1007/s11274-020-02983-0
Ebadipour, N., Lotfabad, T. B., Yaghmaei, S., & RoostaAzad, R. (2015). Optimization of low-cost biosurfactant production from agricultural residues through the response surface methodology. Preparative Biochemistry & Biotechnology, 45(4), 380–390. https://doi.org/10.1080/10826068.2014.979204
Eskandari, S., Rashedi, H., Ziaie-Shirkolaee, Y., Mazaheri-Assadi, M., Jamshidi, E., & Bonakdarpour, B. (2009). Evaluation of oil recovery by rhamnolipid produced with isolated strain from Iranian oil wells. Annals of Microbiology, 59(3), 573–577. https://doi.org/10.1007/BF03175148
Hassanshahian, M. (2014). Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Marine Pollution Bulletin, 86(1-2), 361–366. https://doi.org/10.1016/j.marpolbul.2014.06.043
Kiran, G. S., Thomas, T. A., & Selvin, J. (2010). Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids and Surfaces B: Biointerfaces, 78(1), 8–16. https://doi.org/10.1016/j.colsurfb.2010.01.028
Lang, S., & Wullbrandt, D. (1999). Rhamnose lipids—Biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 51(1), 22–32.
Monteiro, S., & Sassaki, G. (2007). Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chemical Physics, 333(1-3), 138-146.
Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A study on the structure–function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1488(2-3), 211–218. https://doi.org/10.1016/S1388-1981(00)00124-4
Mukherjee, S., Das, P., & Sen, R. (2006). Towards commercial production of microbial surfactants. Trends in Biotechnology, 24(10), 441–446.
Madigan, M., & Martinko, J. (2005). Brock biology of microorganisms. Pearson Prentice Hall.
Nalini, S., & Parthasarathi, R. (2014). Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresource Technology, 173, 231–238. https://doi.org/10.1016/j.biortech.2014.09.051
Oliveira, F., Freire, D., & Castilho, L. (2004). Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnology Letters, 26(13), 1099–1103.
Palleroni, N. J. (2010). The Pseudomonas story. Environmental Microbiology, 12(6), 1377–1383.
Rahman, K. S. M., Rahman, T. J., Kourkoutas, Y., Petsas, I., Marchant, R., & Banat, I. M. (2003). Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology, 90(2), 159–168.
Ramana, K., & Karanth, N. (1989). Factors affecting biosurfactant production using Pseudomonas aeruginosa CFTR‐6 under submerged conditions. Journal of Chemical Technology & Biotechnology, 45(3), 249–257.
Safari, P., Hosseini, M., Lashkarbolooki, M., & et al. (2023). Evaluation of surface activity of rhamnolipid biosurfactants produced from rice bran oil through dynamic surface tension. Journal of Petroleum Exploration and Production Technology, 13, 2139–2153. https://doi.org/10.1007/s13202-023-01660-z
Sakthipriya, N., Doble, M., & Sangwai, J. S. (2015). Action of biosurfactant producing thermophilic Bacillus subtilis on waxy crude oil and long chain paraffins. International Biodeterioration & Biodegradation, 105, 168–177. https://doi.org/10.1016/j.ibiod.2015.09.004
Shatila, F., Diallo, M. M., Şahar, U., Ozdemir, G., & Yalçın, H. T. (2020). The effect of carbon, nitrogen and iron ions on monorhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Archives of Microbiology, 192(10), 1381–1392. https://doi.org/10.1007/s00203-020-01857-4
Silva, I. S., Santos, E. da C. dos, Menezes, C. R., de Faria, A. F., de Franciscon, E., Grossman, M., & Durrant, L. R. (2009). Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technology, 100(19), 4669–4675. https://doi.org/10.1016/j.biortech.2009.03.079
Soberón-Chávez, G., Lépine, F., & Déziel, E. (2005). Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 68(1), 1–8.
Thavasi, R., Jayalakshmi, S., Balasubramanian, T., & Banat, I. M. (2007). Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World Journal of Microbiology and Biotechnology, 24(7), 917–925. https://doi.org/10.1007/s11274-007-9609-y
Walter, V., Syldatk, C., & Hausmann, R. (2010). Screening concepts for the isolation of biosurfactant producing microorganisms. Advances in Experimental Medicine and Biology, 672, 1–13.
Wang, Q., Fang, X., Bai, B., Liang, X., Shuler, P. J., Goddard, W. A., & Tang, Y. (2007). Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnology and Bioengineering, 98(4), 842–853. https://doi.org/10.1002/bit.21462
Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56(3), 339–347. https://doi.org/10.1016/j.mimet.2003.11.001
Zhao, F., Zheng, M., & Xu, X. (2023). Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: Solid-state fermentation, water extraction, medium optimization and potential applications. Bioresource Technology, 369, 128426. https://doi.org/10.1016/j.biortech.2022.128426.