Cornous Biology, Volume 2, Issue 4 : 7-11. Doi : 10.37446/corbio/ra/2.4.2024.7-11
Review Article

OPEN ACCESS | Published on : 31-Dec-2024

The rise of forensic microbiology: unveiling the potential of microbiome in criminal investigations

  • Aditi Kumari
  • Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow – 226028, India.
  • Aditi Singh
  • Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Gomti Nagar Extension, Lucknow – 226028, India.

Abstract

Using the special characteristics of microbial communities, the rapidly expanding science of forensic microbiology is able to provide important new information for criminal investigations. Examining its uses in postmortem interval (PMI) estimation, cause of death identification, and trace evidence analysis, this review explores the rapidly developing subject of forensic microbiology. Recent developments in sequencing technologies have transformed the way microbial communities are characterized, allowing forensic experts to interpret the microbial death clock and uncover latent traces at crime scenes. The potential for improving data analysis, creating reliable prediction models, and assisting in well-informed decision-making is enormous when artificial intelligence (AI) and machine learning (ML) are combined with forensic microbiology. However, in order to protect privacy and avoid discrimination, it is important to carefully navigate the ethical, legal, and social issues surrounding human microbiome research. A more thorough and data-driven approach to criminal investigations is made possible by forensic microbiology's ability to harness the power of the microbiome.

Keywords

microbiome, forensic, trace evidence, machine learning, artificial intelligence, NGS, ethical considerations

References

  • Ahannach, S., Spacova, I., Decorte, R., Jehaes, E., & Lebeer, S. (2021). At the interface of life and death: post-mortem and other applications of vaginal, skin, and salivary microbiome analysis in forensics. Frontiers in microbiology, 12, 694447.

    Benbow, M. E., & Pechal, J. L. (2017). Approaches and considerations for forensic microbiology decomposition research. Forensic microbiology, 56-71.

    Budowle, B., Murch, R., & Chakraborty, R. (2005). Microbial forensics: the next forensic challenge. International journal of legal medicine, 119, 317-330.

    Burcham, Z. M., Pechal, J. L., Schmidt, C. J., Bose, J. L., Rosch, J. W., Benbow, M. E., & Jordan, H. R. (2019). Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Frontiers in microbiology, 10, 745.

    Carter, D. O., Tomberlin, J. K., Benbow, M. E., & Metcalf, J. L. (2017a). Forensic microbiology. John Wiley & Sons.

    Carter, D. O., Tomberlin, J. K., Benbow, M. E., & Metcalf, J. L. (2017b). Perspectives on the future of forensic microbiology. Forensic microbiology, 376.

    Cláudia-Ferreira, A., Barbosa, D. J., Saegeman, V., Fernández-Rodríguez, A., Dinis-Oliveira, R. J., & Freitas, A. R. (2023). The Future Is Now: Unraveling the Expanding Potential of Human (Necro) Microbiome in Forensic Investigations. Microorganisms, 11(10), 2509.

    Fernández-Rodríguez, A., Burton, J., Andreoletti, L., Alberola, J., Fornes, P., Merino, I., Martínez, M., Castillo, P., Sampaio-Maia, B., & Caldas, I. (2019). Post-mortem microbiology in sudden death: sampling protocols proposed in different clinical settings. Clinical Microbiology and Infection, 25(5), 570-579.

    Jaquet-Chiffelle, D.-O., & Casey, E. (2021). A formalized model of the Trace. Forensic Science International, 327, 110941.

    Lauber, C. L., Metcalf, J. L., Keepers, K., Ackermann, G., Carter, D. O., & Knight, R. (2014). Vertebrate decomposition is accelerated by soil microbes. Applied and Environmental Microbiology, 80(16), 4920-4929.

    Lehman, D. C. (2014). Forensic microbiology. Clinical Microbiology Newsletter, 36(7), 49-54.

    Li, P., Luo, H., Ji, B., & Nielsen, J. (2022). Machine learning for data integration in human gut microbiome. Microbial Cell Factories, 21(1), 1-16.

    Metcalf, J. L. (2019). Estimating the postmortem interval using microbes: Knowledge gaps and a path to technology adoption. Forensic Sci. Int. Genet., 38, 211-218. https://doi.org/10.1016/j.fsigen.2018.11.004

    Oliveira, M., & Amorim, A. (2018). Microbial forensics: new breakthroughs and future prospects. Applied microbiology and biotechnology, 102, 10377-10391.

    Roy, D., Tomo, S., Purohit, P., & Setia, P. (2021). Microbiome in death and beyond: current vistas and future trends. Frontiers in Ecology and Evolution, 9, 630397.

    Saegeman, V., Cohen, M. C., Burton, J. L., Martinez, M. J., Rakislova, N., Offiah, A. C., & Fernandez-Rodriguez, A. (2021). Microbiology in minimally invasive autopsy: best techniques to detect infection. ESGFOR (ESCMID study group of forensic and post-mortem microbiology) guidelines. Forensic Science, Medicine and Pathology, 17, 87-100.

    Speruda, M., Piecuch, A., Borzęcka, J., Kadej, M., & Ogórek, R. (2022). Microbial traces and their role in forensic science. Journal of Applied Microbiology, 132(4), 2547-2557.

    Wang, Z., Zhang, F., Wang, L., Yuan, H., Guan, D., & Zhao, R. (2022). Advances in artificial intelligence-based microbiome for PMI estimation. Frontiers in microbiology, 13, 1034051.

    Yousefsaber, F., Naseri, Z., & Hasani, A. H. (2022). A Short Review of Forensic Microbiology. Avicenna Journal of Clinical Microbiology and Infection, 9(2), 88-96.

    Yuan, H., Wang, Z., Wang, Z., Zhang, F., Guan, D., & Zhao, R. (2023). Trends in forensic microbiology: From classical methods to deep learning. Frontiers in microbiology, 14, 1163741.