Cornous Biology, Volume 1, Issue 1 : 1-6. Doi : 10.37446/corbio/ra/1.1.2023.1-6
Review Article

OPEN ACCESS | Published on : 30-Jun-2023

CRISPR/Cas9 genome editing tool for rice crop improvement

  • Selvakumar Gurunathan
  • Department of Crop Improvement, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Bharathi Raja Ramadoss
  • Bioriginal Food and Science Corporation, Saskatoon, SK S7J 0R1, Canada.
  • Ambika Singaram
  • Department of Crop Improvement, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Vendhar Nagar, Baburyanpettai, Tamil Nadu, India.
  • Dhanarajan Arulbalachandran
  • Division of Crop Molecular Breeding and Stress Physiology, Department of Botany, School of Life Sciences, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India.

Abstract

Food crop yield, quality, and tolerance mechanisms to biotic and abiotic factors are important aspects that contribute to food security. To feed about 10 billion people by 2050, high yielding climate-resilient rice cultivars with good grain quality must be created more quickly. Yield and quality, along with stress tolerance traits of the rice crop, have been improved by adopting various methods. Among these, in recent years, the yield of the crop has been improved marginally by utilizing conventional breeding methods. Mutation breeding is an important pathway that has created many novel variations and contributed towards isolating new high yielding genotypes in the rice crop. Forward and reverse genetic protocols have been engaged for the identification of genomic variants in conventional mutation breeding to characterize the novel variants to convert as functional markers for the development of new improved varieties. Generation of desired mutations in the desirable region of the genome of the crops is highly tedious through conventional breeding methods such as random mutagenesis since the gene manipulations happen randomly while the mutagenesis is done using physical and chemical mutagens. Also, it requires large mutant plant populations to isolate the desired mutants and mutations. The advancement of CRISPR/Cas9 genome editing technology rapidly replaces conventional random mutagenesis technologies, has the ability to multiplex genome editing to create novel variations for crop improvement programs, and reduces the time duration required for trait based crop improvement programs. In this review, significant gene manipulations employed through CRISPR/Cas9 for rice crop improvement in terms of yield and biotic and abiotic stress tolerance are discussed.

Keywords

CRISPR/Cas9, crop improvement, mutagenesis, mutations, genome editing, rice

References

  • Alam, M. S., Kong, J., Tao, R., Ahmed, T., Alamin, M., Alotaibi, S. S., ... & Xu, J. H. (2022). CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in rice (Oryza sativa L.). Plants11(9), 1184.

    Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field crops research112(2-3), 119-123.

    Brennan, J. P., & Malabayabas, A. (2011). International Rice Research Institute's contribution to rice varietal yield improvement in South-East Asia.

    Clarke, J. L., & Zhang, P. (2013). Plant biotechnology for food security and bioeconomy. Plant Molecular Biology83, 1-3.

    Denardin, L. G. D. O., Carmona, F. D. C., Veloso, M. G., Martins, A. P., de Freitas, T. F. S., Carlos, F. S., ... & Anghinoni, I. (2019). No-tillage increases irrigated rice yield through soil quality improvement along time. Soil and Tillage Research186, 64-69.

    Jain, P., Singh, P. K., Kapoor, R., Khanna, A., Solanke, A. U., Krishnan, S. G., ... & Sharma, T. R. (2017). Understanding host-pathogen interactions with expression profiling of NILs carrying rice-blast resistance Pi9 gene. Frontiers in Plant Science8, 93.

    Khush, G. (2003). Productivity improvements in rice. Nutrition reviews61(suppl_6), S114-S116.

    Kim, M. S., Ko, S. R., Jung, Y. J., Kang, K. K., Lee, Y. J., & Cho, Y. G. (2023). Knockout Mutants of OsPUB7 Generated Using CRISPR/Cas9 Revealed Abiotic Stress Tolerance in Rice. International Journal of Molecular Sciences24(6), 5338.

    Kim, Y. A., Moon, H., & Park, C. J. (2019). CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice12(1), 1-13.

    Li, J., Zhang, M., Yang, L., Mao, X., Li, J., Li, L., ... & Zou, D. (2021). OsADR3 increases drought stress tolerance by inducing antioxidant defense mechanisms and regulating OsGPX1 in rice (Oryza sativa L.). The Crop Journal9(5), 1003-1017.

    Liao, S., Qin, X., Luo, L., Han, Y., Wang, X., Usman, B., ... & Li, R. (2019). CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy9(11), 728.

    Mackill, D. J., Ismail, A. M., Pamplona, A. M., Sanchez, D. L., Carandang, J. J., & Septiningsih, E. M. (2010). Stress tolerant rice varieties for adaptation to a changing climate. Crop, Environment & Bioinformatics7, 250-259.

    Milovanovic, V., & Smutka, L. (2017). Asian countries in the global rice market. ACTA Universitatis agriculturae et silviculturae mendelianae Brunensis65(2), 679-688.

    Park, J. R., Kim, E. G., Jang, Y. H., Jan, R., Farooq, M., Ubaidillah, M., & Kim, K. M. (2022). Applications of CRISPR/Cas9 as new strategies for short breeding to drought gene in rice. Frontiers in Plant Science13.

    Peng, S., Khush, G. S., Virk, P., Tang, Q., & Zou, Y. (2008). Progress in ideotype breeding to increase rice yield potential. Field Crops Research108(1), 32-38.

    Romero, F. M., & Gatica-Arias, A. (2019). CRISPR/Cas9: development and application in rice breeding. Rice Science26(5), 265-281.

    Ryoo, N., Yu, C., Park, C. S., Baik, M. Y., Park, I. M., Cho, M. H., ... & Jeon, J. S. (2007). Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant cell reports26, 1083-1095.

    Santosh Kumar, V. V., Verma, R. K., Yadav, S. K., Yadav, P., Watts, A., Rao, M. V., & Chinnusamy, V. (2020). CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants26, 1099-1110.

    Zhang, Y., Polinski, M. P., Morrison, P. R., Brauner, C. J., Farrell, A. P., & Garver, K. A. (2019). High-load reovirus infections do not imply physiological impairment in salmon. Frontiers in Physiology10, 114.

    Seo, D. H., Seomun, S., Choi, Y. D., & Jang, G. (2020). Root development and stress tolerance in rice: the key to improving stress tolerance without yield penalties. International Journal of Molecular Sciences21(5), 1807.

    Shan, Q., Wang, Y., Li, J., & Gao, C. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature protocols9(10), 2395-2410.

    Távora, F. T., Meunier, A. C., Vernet, A., Portefaix, M., Milazzo, J., Adreit, H., ... & Mehta, A. (2022). CRISPR/Cas9-Targeted knockout of rice susceptibility genes OsDjA2 and OsERF104 reveals alternative sources of resistance to Pyricularia oryzae. Rice Science29(6), 535-544.

    Tianshun, Z. H. O. U., Dong, Y. U., Ling, L. I. U., Ning OUYANG, G. Y., Meijuan, D. U. A. N., & Dingyang, Y. U. A. N. (2021). CRISPR/Cas9-mediatedEditing of AFP1Improves Rice Stress Tolerance. Chinese Journal OF Rice Science35(1), 11.

    Tripathi, A. K., Pareek, A., Sopory, S. K., & Singla-Pareek, S. L. (2012). Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice5, 1-12.

    Wang, S., Li, S., Liu, Q., Wu, K., Zhang, J., Wang, S., ... & Fu, X. (2015). The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature genetics47(8), 949-954.

    Wang, W., Wang, W., Pan, Y., Tan, C., Li, H., Chen, Y., ... & Ma, C. (2022). A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield. The Crop Journal10(4), 1207-1212.

    Xing, Y.; Zhang, Q. Genetic and molecular bases of rice yield. Annu. Rev. Plant. Biol. 2010, 61, 421–442.

    Yue, E., Cao, H., & Liu, B. (2020). OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants9(10), 1337.

    Zafar, K., Khan, M. Z., Amin, I., Mukhtar, Z., Yasmin, S., Arif, M., ... & Mansoor, S. (2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in plant science11, 575.

    Zafar, K., Sedeek, K. E., Rao, G. S., Khan, M. Z., Amin, I., Kamel, R., ... & Mahfouz, M. M. (2020). Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Frontiers in Genome Editing2, 5.

    Zeng, X., Luo, Y., Vu, N. T. Q., Shen, S., Xia, K., & Zhang, M. (2020). CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biology20(1), 1-11.

    Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2020). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Frontiers in plant science10, 1663.

    Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., ... & Luo, L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular breeding39, 1-10.

    Zhang, X. Q., Hou, P., Zhu, H. T., Li, G. D., Liu, X. G., & Xie, X. M. (2013). Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality. Molecular biology reports40, 3475-3481.

    Zhou, Y., Xu, S., Jiang, N., Zhao, X., Bai, Z., Liu, J., ... & Yang, Y. (2022). Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9. Plant Biotechnology Journal20(5), 876-88.