Background: Meloidogyne incognita is a major pest in various vegetable production with very less management options. The scientometric analysis aims to give a comprehensive picture of M. incognita, a root-knot nematode (RKN) responsible for crop damage worldwide.
Methods: A thorough search of the SCOPUS database was performed using relevant keywords to identify relevant publications of the last 20 years. The bibliometrix package of R statistical programming language was used to generate compelling descriptive statistics, elaborate network visualizations, and other insightful scientometric metrics.
Results: The Journal of Nematology published a higher number of publications with 3212 citations. Aligarh Muslim University and Indian Agricultural Research Institute, India are the most productive institutions whereas, the National Natural Science Foundation of China funded the highest number of research projects. The quantitative analysis and statistics of SCOPUS data offer valuable insight into the research landscape, highlighting the most active nations, institutions, and authors, along with the most-cited articles and burgeoning research directions.
Conclusion: The study provided deep insight into the different research areas which may help to improve the understanding of research patterns and knowledge about M. incognita. Furthermore, the data generated here can be of potential value to researchers and policymakers interested in addressing the challenges associated with M. incognita infestations.
Meloidogyne incognita, bibliometric analysis, SCOPUS, scientific research
Abdullah, M. M., Khan, A., Albargi, H. B., Ahmad, M. Z., Ahmad, J., Ahmad, F., Akhtar, M. S., Mohsin, N., Ahmad, F., Kamal, M. A., Alqurashi, Y. E., Lal, H., & Algethami, J. S. (2023). Ipomoea carnea associated phytochemicals and their in silico investigation towards Meloidogyne incognita. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 73(1), 74–87. https://doi.org/10.1080/09064710.2023.2194305
Aparajita, B., Keshab, H., Bornali, M., & Debajani, G. (2024). Management of Root Knot Nematode Meloidogyne incognita on Carrot. Journal of Scientific Research and Reports, 30(5), 1–8.
Berliner, J., Ganguly, A. K., Kamra, A., Sirohi, A., & VP, D. (2023). Effect of elevated carbon dioxide on population growth of root-knot nematode, Meloidogyne incognita in tomato. Indian Phytopathology, 76(1), 309–315.
Çatalkaya, M., Göknur, A., & Devran, Z. (2024). Rapid identification of Meloidogyne hapla by KASP assay. Crop Protection, 178, 106600.
Diyapoglu, A., Oner, M., & Meng, M. (2022). Application potential of bacterial volatile organic compounds in the control of root-knot nematodes. Molecules, 27(14), 4355.
Farooq, R. (2024). A review of knowledge management research in the past three decades: a bibliometric analysis. VINE Journal of Information and Knowledge Management Systems, 54(2), 339–378.
Gangwar, S., & Sirohi, A. (2023). Combined Effect of Two Transgenes by Host Delivered RNAi against Meloidogyne incognita and its Parasitic Potential. Indian Journal of Nematology, 53(1), 21–27.
Gupta, R., Mfarrej, M. F. B., Xhemali, B., Khan, A., Nadeem, H., & Ahmad, F. (2023). Metabolic responses of plants to Meloidogyne species parasitism: A review on molecular events and functions. Journal of King Saud University-Science, 103083.
Irdani, T., Sala, T., Cutino, I., & Tarchi, F. (2023). Solanum torvum mediates protection against the nematode Meloidogyne incognita in neighboring plants. Journal of Plant Diseases and Protection, 130(6), 1301–1315.
Khan, A., Haris, M., Hussain, T., Khan, A. A., Laasli, S. E., Lahlali, R., & Mokrini, F. (2023). Counter-attack of biocontrol agents: Environmentally benign Approaches against Root-knot nematodes (Meloidogyne spp.) on Agricultural crops. Heliyon, 9(11), e21653. https://doi.org/10.1016/j.heliyon.2023.e21653
Kushartadi, T., Mulyono, A. E., Al Hamdi, A. H., Rizki, M. A., Sadat Faidar, M. A., Harsanto, W. D., Suryanegara, M., & Asvial, M. (2023). Theme mapping and bibliometric analysis of two decades of smart farming. Information, 14(7), 396.
Kyndt, T., Fernandez, D., & Gheysen, G. (2014). Plant-parasitic nematode infections in rice: molecular and cellular insights. Annual Review of Phytopathology, 52, 135–153.
Massalha, H., Korenblum, E., Tholl, D., & Aharoni, A. (2017). Small molecules below‐ground: the role of specialized metabolites in the rhizosphere. In The plant journal (Vol. 90, Issue 4, pp. 788–807). Wiley Online Library.
Ploeg, A. T., Stoddard, C. S., Turini, T. A., Nunez, J. J., Miyao, E. M., & Subbotin, S. A. (2023). Tomato Mi-gene Resistance-Breaking Populations of Meloidogyne Show Variable Reproduction on Susceptible and Resistant Crop Cultivars. Journal of Nematology, 55(1).
Ralmi, N., Khandaker, M. M., & Mat, N. (2016). Occurrence and control of root knot nematode in crops: a review. Australian Journal of Crop Science, 11(12), 1649.
Rocha, L. F., & Schwan, V. V. (2023). Applications of Omics in the Management of Plant-parasitic Nematodes. In Novel Biological and Biotechnological Applications in Plant Nematode Management (pp. 187–201). Springer.
Sena, L., Mica, E., Valè, G., Vaccino, P., & Pecchioni, N. (2024). Exploring the potential of endophyte-plant interactions for improving crop sustainable yields in a changing climate. Frontiers in Plant Science, 15, 1349401.
Siddiqui, Z. A., Khan, M. R., & Aziz, S. (2024). Use of manganese oxide nanoparticle (MnO2 NPs) and Pseudomonas putida for the management of wilt disease complex of carrot. Experimental Parasitology, 257, 108698.
Sundararajan, N., Habeebsheriff, H. S., Dhanabalan, K., Cong, V. H., Wong, L. S., Rajamani, R., & Dhar, B. K. (2024). Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems. Global Challenges, 8(1), 2300187.
Taning, L. M., Chann, L., Fleerakkers, S., Lippens, L., Formesyn, E., Tirry, L., & Wesemael, W. M. L. (2023). Host plant status and damage threshold of Pea (Pisum sativum) and Celeriac (Apium graveolens var. rapaceum) for the temperate root-knot nematode Meloidogyne chitwoodi. European Journal of Plant Pathology, 167(3), 323–333.
Tauseef, A., Khalilullah, A., & Uddin, I. (2021). Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Experimental Parasitology, 220, 108045.
Walia, R. K., & Khan, M. R. (2023). Root-knot Nematodes (Meloidogyne spp.). In Root-Galling Disease of Vegetable Plants (pp. 1–60). Springer.
Yao, Y., Huo, J., Ben, H., Gao, W., Hao, Y., Wang, W., & Xu, J. (2023). Biocontrol efficacy of endophytic fungus, Acremonium sclerotigenum, against Meloidogyne incognita under in vitro and in vivo conditions. Biologia, 78(11), 3305–3313.
Zhao, J., Huang, K., Liu, R., Lai, Y., Abad, P., Favery, B., Jian, H., Ling, J., Li, Y., & Yang, Y. (2024). The root-knot nematode effector Mi2G02 hijacks a host plant trihelix transcription factor to promote nematode parasitism. Plant Communications, 5(2).
Zhong, X., Su, G., Hao, L., Chen, H., Li, C., Xu, H., Zhou, H., & Zhou, X. (2024). Foliar application of glycine‐functionalized nanopesticides for effective prevention and control of root‐knot nematodes via a targeted delivery strategy. Pest Management Science, 80(4), 2120–2130.
Zonunpui, M., Das, D., & Basumatary, B. (2022). Approaches for management of Meloidogyne incognita in pulses. Indian Journal of Agricultural Sciences, 92(11), 1395–1398. https://doi.org/10.56093/ijas.v92i11.124510